

Compresso Connect F

Системы поддержания давления с компрессорами

Для систем отопления мощностью до 4 мВт, охлаждения до 6 мВт.

Compresso Connect F

Compresso – это установки поддержания давления с использованием компрессоров для систем отопления, холодоснабжения и гелиосистем. Они особенно подходят в ситуациях, когда требуется компактность и точность, применяются в системах средней мощности. Новая панель управления **BrainCube Connect** обеспечивает новый уровень связи, создавая возможность подключения к системе BMS, прочим блокам управления BrainCubes, а также возможность дистанционного управления системой поддержания давления с визированием по экрану монитора.

Ключевые особенности

 Усовершенствованный дизайн для более легкого и удобного управления

Прочный 3,5-дюймовый на тонкопленочных транзисторах, цветной, сенсорный дисплей. Удобное для пользователя меню. Интерфейс с удаленным доступом в Интернет с дистанционным управлением и визированием по экрану монитора. Панель управления BrainCube Connect встроенная в ТесВох.

 Удаленный доступ к сети и поиск и устранение неисправностей

Удаленный доступ к сети и поддержка операций по отладке и вводу в действие, снижающие необходимость в высококвалифицированных специалистах перед началом эксплуатации. Более короткое время отклика, снижение затрат на ремонт. Регистрация данных о проверках показателей работы системы.

Типовые средства подсоединения к системе BMS и имеющимся удаленным устройствам (RS485, Ethernet, USB), позволяющие экономить время установки и обслуживания, а также управляемости блоков. Связь максимум с 8 блоками BrainCubes в сети типа «ведущий – ведомый».

Технические характеристики - ТесВох

Область применения:

Системы, отопления, холодоснабжения, гелиосистемы. Для систем в соответствии с EN 12828, SWKI 93-1, солнечные системы в соответствии с EN 12976, ENV 12977 локальная температурная защита в случаях отключения питания.

Давление:

Минимально допустимое давление, PSmin: 0 бар Максимально допустимое давление, PS: см. артикулы

Температура:

Максимально допустимая температура окружающей среды, ТА: 40°C Минимально допустимая температура окружающей среды, TAmin: 5°C

Погрешность:

Точное поддержание давления ± 0.1 бар.

Напряжение питания:

1 x 230V (-6% + 10%), 50/60 Hz

Общая потребляемая электрическая мощность:

См. артикулы.

Класс защиты:

IP 22 в соответствии с EN 60529

Уровень шума:

59 dB(A) /16ap

Материал:

Сталь, латунь, алюминий

Транспортировка и хранение:

В теплых и сухих местах.

Аттестация:

Утверждение типового образца согласно СЕ и европейским директивам 2004/108/ЕС, 2006/95/ЕС.

Технические характеристики - Расширительные баки

Область применения:

Только вместе с блоком управления ТесВох.

См. приложения под техническим описанием – блок управления ТесВох.

Среда:

Неагрессивные и нетоксичные среды. Антифриз до 50%.

Давление:

Минимально допустимое давление, PSmin: 0 бар

Максимально допустимое давление,

PS: см. артикулы

Температура:

Максимально допустимая температура камеры, ТВ: 70°C

Минимально допустимая температура камеры, TBmin: 5°C

В соответствии с PED: Максимально допустимая температура, TS: 120°С Минимально допустимая температура,

TSmin: -10°C

Материал:

Сталь. Цвет "бериллий". Воздухонепроницаемая бутилкаучуковая камера airproof согласно EN 13831 и внутреннему стандарту Pneumatex.

Транспортировка и хранение:

В теплых и сухих местах.

Аттестация:

Утверждение типового образца согласно CE PED/ DEP 97/23/EC.

Гарантия:

Compresso CG, CG...Е: гарантия на воздухонепроницаемую бутил-каучуковую камеру 5 лет.

Compresso CU, CU...E: гарантия на баки 5 лет.

Функции, оборудование, особенности

TecBox:

- панель управления BrainCube Connect для интеллектуальной, автоматичесской, безопасной работы. Самооптимизирующаяся с функционированием ЗУ.
- Регистрация данных и анализ системы, ЗУ хронологии сообщений с функцией приоритизации, управляемое дистанционно с визуализацией по экрану, периодическое автоматическое самотестирование.
- Прочный 3,5-дюймовый на тонкопленочных транзисторах, цветной, сенсорный дисплей с подсветкой. Удобная для работы схема меню с функцией перемещения и единственная помощь в диалоговых окнах. Отображение всех требуемых параметров и рабочего состояния в текстовом формате и/или в виде графики, на нескольких языках.
- Бесшумная работа.
- Дополнительная опция контроля и управления безопасной подпитки водой посредством включения в схему блока Pleno P.
- Высококачественный металлический кожух.
- Сборка улучшающая габариты первичного бака CU или CG
- Включение монтажного комплекта для соединения ТесВох с первичным баком.

Расширительные баки:

- Выпуск воздуха из камеры сверху, слив конденсата внизу бака.
- Синусоидальное кольцо для вертикальной установки (CU, CU...E).
- Воздухонепроницаемая бутилкаучуковая камера (CU, CU...E, CG, CG...E), в баках серии CG, CG...E камера может быть заменена.
- Доступ для внутренних эндоскопических проверок (CU, CU...E). Два фланцевых отверстия для внутренних проверок (CG, CG...E).
- Защищающее от коррозии внутреннее покрытие для минимизации износа камеры (CG, CG...E).
- Гибкая вставка для соединения с водяной стороны и запорный клапана с дренажем. (CU, CG).
- Монтажный комплект для соединения баков с воздушной стороны и запорный клапан с дренажем. (CU...E, CG...E).

Расчёт

Поддержание давления для системы TAZ ≤ 100°C

Расчет в соответствие EN 12828, SWKI 93-1 ****).

Для таких систем как гелиосистемы, системы централизованного теплоснабжения, системы с температурой теплоносителя свыше 100°C, системы охлаждения с температурой ниже 5°C, пожалуйста, используйте HySelect – программа для проектирования и расчетов или свяжитесь с нашим представительством.

Общие ур авнения

Vs	Объем воды в системе		Vs = vs · Q	VS	Удельный объем воды, таблица 4.
			Vs= известно		Проектирование, расчет
				Q	Установленная тепловая мощность в кВт.
Ve	Расширительный объем	EN 12828	Ve = e · Vs	е	Коэффициент расширения для t _{тах} , таблица 1
	Отопление :	SWKI 93-1	$Ve = e \cdot Vs \cdot X^{1)}$	е	Коэффициент расширения при (ts _{max} + tr)/2, таблица 1
	Охлаждение :	SWKI 93-1	Ve = e · Vs + Vwr	е	Коэффициент расширения при ts _{max} , таблица 1
Vwr	Запас воды	EN 12828	Vwr ≥ 0,005 · Vs ≥ 3 L		
	Отопление :	SWKI 93-1	Vwr рассм. в Ve с		
			коэффициентом Х		
	Охлаждение :	SWKI 93-1	Vwr ≥ 0,005 · Vs ≥ 3 L		
p0	Минималь. давление ²⁾		$P0 = H_{ST} / 10 + pD + 0.3$ $fap \ge pz$	Hst	Статическая высота
	Нижнее предельное			pz	Минимальное давление на входе в устройство,
	значение для				например, NPSH- номинальное положительное
	поддержания давления				давление на всасывающем патрубке насоса или
	поддоржанин давнин				бойлера
	'	'			
ра	Начальное давление		pa ≥ p0 + 0,3 bar		
	Нижнее значение				
	для оптимального				
	поддержания давления				
		'	1		
pe	Конечное давление		pe=pa+0,2		
	Верхнее значение	EN 12828	pe ≤ psvs - dpsvs	psvs	Давление срабатывания предохранительного клапана
	для оптимального	2.1.2020	Po _ posts		Addition to opaca. Black the type of the territorial talls
	поддержания давления				
		SWKI 93-1	pe ≤ psvs/1,3	dpsvs	Разница давления закрытия для предохранительного
		OVVICEO 1	pc = p3v3/1,0	apovo	клапана
				dpsvs	
				dpsvs.	
				I abasa ^c	- 0,1 1 0 v 11pri pava 20 bai
VN	Номинальный объем	EN 12828	VN ≥ (Ve + Vwr + 5 ³) · 1,1		
414	расширительного	LIN IZOZO	*14 = (40 T * WVI T 5 ') * 1,1		
	бака ⁵⁾				
	Jana	SWKI 93-1	VN ≥ (Ve + 5 ³) · 1,1		
		04414190-1	A14 = (AC + 2,) , 1'1		

Наша программа HySelect для выполнения расчетов в интерактивном режиме разработана с учетом прогрессивных методик и современных баз данных. Однако она не исключает незначительных отклонений.

- 1) $Q \le 30 \text{ kW}$: $X = 3 \mid 30 \text{ kW} < Q \le 150 \text{ kW}$: $X = 2 \mid Q > 150 \text{ kW}$: X = 1,5
- 2) Формула для вычисления минимального давления p0 действительна для монтажа установки поддержания давления на всасывающей стороне циркуляционного насоса. При монтаже на стороне нагнетания p0 повышается под влиянием давления насоса Δ p.
- 3) Необходимо добавить 5 литров при применении систем дегазации Vento.
- 4) Используемые предохранительные клапаны должны удовлетворять этому требованию.
- 5) Выберите бак, имеющий равный или больший номинальный объем.
- *) SWKI 93-1: Действительно для Швейцарии

Таблица 1: е Коэффициент расширения

t (TAZ, ts _{max} , tr, ts _{min}), °C		20	30	40	50	60	70	80	90	100	105	110
е Вода без добавок	= 0°C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513
е % вес МЕС*												
30%	= -14,5°C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663
40%	= -23,9°C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750
50%	= -35,6°C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830
е % вес МРС*												
30%	= -12,9°C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823
40%	= -20,9°C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924
50%	= -33,2°C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036

Таблица 4: Прибл. объем воды *** vs в теплоснабжении здания зависит от установленной мощности поверхности нагрева Q

ts _{max} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Радиаторы	vs л/кВт	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Панельные радиаторы	vs л/кВт	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Конвекторы	vs л/кВт	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Вентиляционные установки	vs л/кВт	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Напольное отопление	vs л/кВт	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

^{*)} MEG = Mono-Ethylene Glycol

Показатели температуры

ts___ Максимальная температура системы

Максимальная температура для расчета расширения объема. В отопительных установках - расчетная температура подачи, при превышении которой эксплуатация отопительной установки при минимально допустимой температуре окружающей среды (допустимая температура окружающей среды - согласно EN 12828) запрещена. В системах охлаждения - максимальная температура в режиме работы или простоя, в солнечных теплосистемах - температура, при превышении которой начинается процесс испарения.

ts_{min} Минимальная температура системы

Минимальная температура для расчета расширения объема. Самая низкая температура системы равно точке замерзания. Это – зависит от концентрации антифриза. Вода без добавок $t_{\min} = 0$.

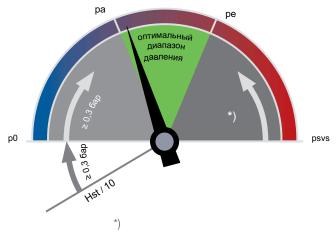
tr Температура в обратном трубопроводе

Температура в обратном трубопроводе отопительной системы при минимально допустимой температуре окружающей среды (норма температуры окружающей среды - согласно EN 12828).

ТАZ Предохранительный ограничитель температуры, Предохранительное реле температуры, Ограничительная температура

Защитное устройство согласно EN 12828 для соблюдения температурных условий теплового генератора. При превышении установленной ограничительной температуры происходит отключение отопления. Ограничитель выполняет блокировку, при наличии контрольного прибора при установленной температуре производится автоматическая разблокировка подвода тепла. Согласно EN 12828 этот параметр для систем составляет ≤ 110 °C.

^{**)} MPG = Mono-Propylene Glycol


^{***)} Объём воды = источник тепла + распределительные трубопроводы + отопительные приборы

Точное поддержание давления

Точное поддержание давления

Пневматический Compresso минимизирует изменения давления между ра и ре.

± 0,1 бар

 \geq psvs $\cdot 0.9 \geq 0.5$

≥ psvs · 0.3/1.3 SWKI 93-1 Отопление

р0 Минимальное давление

Compresso

Pacчет p0 и точек переключения осуществляется BrainCube.

ра Начальное давление

Compresso

If the system pressure is < pa, the compressor starts.
pa = p0 + 0,3

ре Конечное давление

Compresso

Если при нагреве давление в баке достигает ре, происходит открывание соленоидного клапана с воздушной стороны.

pe = pa + 0,2

Таблица 3: Ориентировочные значения DNe для соединительных труб в установках Statico и Compresso

Длина до 30 м DNe		20	25	32	40	50				
Отопление:										
EN 12828	Q kW	1000	1700	3000	3900	6000				
Охлаждение:										
ts _{max} ≤ 50 °C	Q kW	1600	2700	-	-	-				

Быстрый выбор

Отопительная установка TAZ ≤ 100 °C, без антифриза, EN 12828

	ТесВох	Первичный сосуд							
	1 компрессор	Ради	аторы	Панельные	радиаторы				
	C 10.1 F	90 70	70 50	90 70	70 50				
Q [κΒτ]	Статическая высота Hst		Номин.	объем VN					
	[M]		[лит	тров]					
≤ 300	46,1	200	200	200	200				
400	46,1	300	300	200	200				
500	46,1	300	300	200	200				
600	45,0	400	400	300	300				
700	41,0	500	500	300	300				
800	37,5	500	500	400	300				
900	34,6	600	600	400	400				
1000	32,0	600	600	400	400				
1100	29,8	800	800	500	400				
1200	27,7	800	800	500	500				
1300	25,9	800	800	500	500				
1400	24,2			600	500				
1500	22,7			600	600				
2000	16,6			800	800				

Пример

Q = 900 кВт Радиаторы 90 | 70 °C TAZ = 100 °C Hst = 35 м psvs = 6 бар

Выбор:

TexBox C 10.1-6 F

Первичный сосуд CU 600.6

Настройка BrainCube:

Hst = 35 MTAZ = 100 °C

Проверка psvs: для TAZ = 100 °C

EN 12828: psvs: 35/10 + 1,3 = 4,8 < 6 o.k. SWKI 93-1: psvs: $(35/10 + 0,8) \cdot 1,3 = 5,59 < 6$ o.k.

Оборудование

Соединительные трубы

Согласно таблице 5. С несколькими баками должны быть рассчитаны в зависимости от производительности на один бак.

Запорно-регулирующий клапан DLV

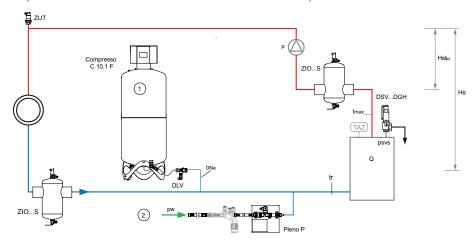
Включённый в состав поставки.

Zeparo

Автоматический клапан выпуска воздуха Zeparo ZUT, ZUTX или ZUP в каждой высокой точке для выпуска воздуха при заполнении и дренировании. Сепаратор для шлама и магнетита в каждой системе на обратной магистрали перед источником тепла. Если не установлена система централизованного вакуумирования (например, Vento или Compresso CPV) сепаратор микропузырьков может быть смонтирован в основном потоке, если это возможно, перед циркуляционным насоссом.

Не допускается превы-шение приведенных в таблице значений статической высоты Hst_{m} для сепаратора микропузырьков.

ts _{max} °C	90	80	70	60	50	40	30	20	10
Hst Ім вод. ст.	15.0	13.4	11.7	10.0	8.4	6.7	5.0	3.3	1.7

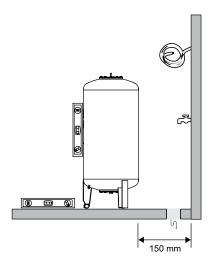

Пример использования

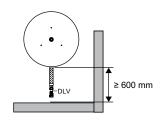
Compresso C 10.1 F Connect

TecBox с 1 компрессором над первичным сосудом, точное поддержание давления ± 0,1 бар с подпиткой Pleno P

Для отопительных установок мощностью около 2 000 кВт

может требовать изменений в соответствии с местными нормами


- 1. Compresso Первичный сосуд CU
- 2. Подключение подпитки, $pw \ge p0 + 1,7$ бар, (макс. 10 бар)


Zeparo ZIO...S на подаче конфигурирован как отделитель микропузырьков, в обратном трубопроводе - как шламоотделитель.

Zeparo ZUT для автоматического выпуска воздуха при заполнении и дренировании.

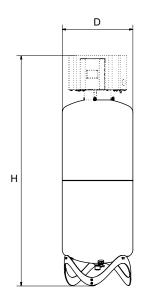
Дополнительное оборудование и детали подбора: Лист данных *Pleno, Zeparo и Аксессуары*

Установка

TecBox, Compresso C 10.F Connect

Н

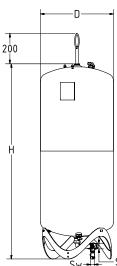
Compresso C 10.1 F Connect


Точное поддержание давления ± 0.1 бар.

1 компрессор. Коллектор с одним перепускным клапаном и предохранительным клапаном.

Тип	PS	В	Н	Т		Pel	№ изделия
	[бар]				[кг]	[кВт]	
C 10.1-3.75 F	3,75	370	315	370	14	0,6	810 1411
C 10.1-5 F	5	370	315	370	14	0,6	810 1413
C 10.1-6 F	6	370	315	370	14	0,6	810 1414

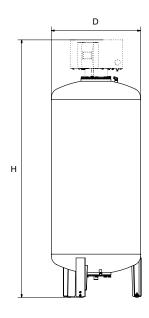
Т = глубина устройства


Расширительные баки

Compresso CU

Первичный бак. Измерительная пята для измерения уровня. В комплект входит гибкая вставка для соединения с водяной стороны, запорный клапан DN15 для быстрого опорожнения бака, монтажный комплект для соединения баков с воздушной стороны.

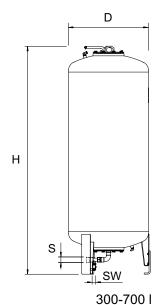
Тип	VN	D	Н		S	Sw	№ изделия
	[л]			[кг]			
6 бар (PS)							
CU 200.6	200	500	1622	34	Rp1	G3/4	712 1000
CU 300.6	300	560	1753	40	Rp1	G3/4	712 1001
CU 400.6	400	620	1818	58	Rp1	G3/4	712 1002
CU 500.6	500	680	1914	67	Rp1	G3/4	712 1003
CU 600.6	600	740	1925	80	Rp1	G3/4	712 1004
CU 800.6	800	740	2418	98	Rp1	G3/4	712 1005


Compresso CU...E

Вторичный бак. В комплект входит гибкая вставка для соединения с водяной стороны, запорный клапан DN15 для быстрого опорожнения бака, монтажный комплект для соединения баков с воздушной стороны.

Тип	VN	D	Н	H***	m	S	Sw	№ изделия
	[л]				[кг]			
6 бар (PS)								
CU 200.6 E	200	500	1340	1565	33	Rp1	G3/4	712 2000
CU 300.6 E	300	560	1469	1690	39	Rp1	G3/4	712 2001
CU 400.6 E	400	620	1532	1760	57	Rp1	G3/4	712 2002
CU 500.6 E	500	680	1627	1858	66	Rp1	G3/4	712 2003
CU 600.6 E	600	740	1638	1873	79	Rp1	G3/4	712 2004
CU 800.6 E	800	740	2132	2360	97	Rp1	G3/4	712 2005

VN = Номинальный объем


^{***)} Макс. Высота при наклоне бака

Compresso CG

Первичный бак. Измерительная пята для измерения уровня. В комплект входит гибкая вставка для соединения с водяной стороны, запорный клапан DN15 для быстрого опорожнения бака, монтажный комплект для соединения баков с воздушной стороны.

Тип*	VN	D	H**		S	Sw	№ изделия
	[л]			[кг]			
6 бар (PS)							
CG 300.6	300	500	2086	140	Rp1	G3/4	712 1006
CG 500.6	500	650	2126	190	Rp1	G3/4	712 1007
CG 700.6	700	750	2156	210	Rp1	G3/4	712 1008

Compresso CG...E

Вторичный бак. В комплект входят радиаторный клапан двойной регулировки с шаровым краном для быстрого опорожнения, монтажный комплект для соединения баков с воздушной стороны. лива.

Тип*	VN [л]	D	H**	H***	m [кг]	S	Sw	№ изделия
6 бар (PS)								
CG 300.6 E	300	500	1823	1839	140	Rp1	G3/4	712 2006
CG 500.6 E	500	650	1864	1893	190	Rp1	G3/4	712 2007
CG 700.6 E	700	750	1894	1931	210	Rp1	G3/4	712 2008

VN = Номинальный объем

^{*)} Специальные баки по заказу.

^{**)} отклонение 0 /-100.
***) Макс. Высота при наклоне бака

